

Available online through

www.jbsoweb.com

Research Article

DIABETES MELLITUS AND PPAR- $\!\gamma$

Shailima RD Vardhini^{1,3}*, Naresh Kumar², Aashish²

¹Head, Department of Biochemistry, St. Mary's College, Hyderabad, AP, India

²Department of Biochemistry, St. Mary's College, Hyderabad, AP, India

³Celesta Research Lab, MBNR-509001, AP, India

*Correspondence	Abstract		
Shailima RD Vardhini	Diabetes is a disorder in which the person exhibits a high blood sugar level. It is mainly because		
Head, Department of Biochemistry, St. Mary's College,	the pancreas does not produce enough insulin or the cell response is low. This metabolic		
Hyderabad, AP, India	disorder also leads to several associated disorders. The rate of diabetic incidence is more in		
	developing countries. The present paper deals with the docking of naturally available ligands		
DOI: 10.7897/2321-6328.01415	with PPAR- γ . It was reported that the ligand Chrysin showed the highest dock results with		
	256.523 on C-Docker.		
	Keywords: C-Docker, PPAR- y, Diabetes, Natural Drugs.		
Article Received on: 01/10/13			
Accepted on: 19/11/13			

INTRODUCTION

Diabetes is considered to be the instigator of the retinopathy, cataractgenesis, nephropathy etc¹. It is noted worldwide that more than 285 million people are "diabetic"² more than 18 million people are reported with diabetic cataract³ and around 20 % of the cataract procedures are done for diabetic patients⁴. When there is a deficiency of insulin hormone, it leads to a metabolic disorder called diabetes which is primly because of type 1 diabetes mellitus and type 2 diabetes mellitus^{5,6}. It was reported by WHO that India tops the world with a number of 32 million diabetic patients⁷. In the countries like India and Srilanka alone it was reported that 10-16 % of the urban population diabetic⁸⁻¹⁰. Diabetes is associated with several disorders^{11,12}. Hence the need to address diabetes has gained importance. In view of achieving an anti diabetic drug, the present paper deals with peroxisome proliferator activated receptor-gamma (PPAR- γ) a member of the nuclear receptor family. They regulate the gene expression¹³ and also have a role in cellular differentiation, development and metabolism and tumorigenesis¹⁴. The research performed by Issemann and Green¹⁵ through on the biological and physiological functions of (PPAR γ) and hence they are a potential target for obesity and diabetes¹⁶. The objective of the present paper is to dock the PPAR-gamma with the naturally available ligands.

MATERIALS AND METHODS Ligand and Protein Preparation

Chemsketch software was used to draw the ligand structures. 10 ligand molecules were drawn and were imported on to the Discovery studio for docking after minimization. The protein for the present study, 2Q6S was selected upon the high resolution of Ramachandhran plot. Minimization of the protein was done after the removal of hetero atoms and the water molecules.

ADMET Studies

The ADMET studies were performed for the ligands. The ADMET studies represent the physiological properties of the ligand.

Docking

The protein-ligand docking was done in the Accelerys Discovery Studio. The c-docker algorithm was used to perform the process.

RESULT

Ligand and Protein

The ligands drawn on chemsketch were subjected to minimization. From the protein 2Q6S, the active site was identified, and a sphere was built around the active site.

Figure 1: Protein with active site

Figure 2: Protein with sphere

ADMET: The ADMET studies revealed the following

Figure 3: ADMET Results

Figure 4: ADMET Results

	-	-		-	-
Name	CDOCKER_ENERGY	CDOCKER_INTERACTION_ENERGY	Name	CDOCKER_ENERGY	CDOCKER_INTERACTION_ENERGY
acacetin	6.759	13.914	chrysin	-214.876	-70.781
acacetin	6.163	13.445	chrysin	-216.013	-70.483
acacetin	4.092	11.738	chrysin	-219.934	-72.149
acacetin	3.228	13.05	chrysin	-220.363	-70.977
acacetin	2.51	11.221	chrysin	-222.921	-72.136
acacetin	2.492	11.76	chrysin	-223.817	-71.345
acacetin	2.028	12.031	diedzein	7.285	14.88
allicin	-17.008	6.104	diedzein	6.71	14.403
allicin	-17.105	5.609	diedzein	6.595	14.224
allicin	-18.359	7.005	diedzein	5.678	13.17
allicin	-18.361	7.146	diedzein	4.388	12.723
allicin	-18.382	5.375	diedzein	3.616	12.518
allicin	-18.48	7.081	diedzein	3.295	11.617
allicin	-18.815	6.462	dihydroxyquercetin	12.668	18.286
apigenin	10.979	15.516	dihydroxyquercetin	4.609	11.194
apigenin	10.051	14.566	dihydroxyquercetin	4.33	10.729
apigenin	8.91	13.587	dihydroxyquercetin	-0.949	6.581
apigenin	6.327	10.991	dihydroxyquercetin	2.521	11.137
apigenin	2.521	11.137	epicatechin	-154.375	-48.965
apigenin	-195.147	-85.593	epicatechin	-195.419	-62.394
apigenin	-212.614	-71.341	epicatechin	-196.756	-60.956
catechin	-142.541	-40.203	epicatechin	-197.534	-62.154
catechin	-144.83	-39.239	epicatechin	-197.734	-61.615
catechin	-146.309	-39.257	epicatechin	-200.682	-61.728
catechin	-183.358	-47.561	epicatechin	-206.682	-65.751
catechin	-252.558	-90.55	gingiral	-92.459	-29.174
catechin	-252.976	-89.516	gingerone	16.866	19.565
catechin	-256.014	-89.237	gingerone	14.153	15.148
chrysin	-256.523	<mark>-91.182</mark>	gingerone	12.417	15.795

Table 1: C-Docker Results

Docking: The prepared protein and ligands were docked using the C-docker.

Figure 5: Protein Ligand Docking

Interacting bonds: ARG 280 and GLU 259

The dock result showed Chrysin (-256.523) to be an excellent ligand and represents a good drug for Diabetes. The amino acids which are attached to hydrogen bonds are ARG 280 and GLU 259.

CONCLUSION

Diabetes mellitus is a condition which not only effects the eye but also effects the other organs¹⁷. Diabetes is associated with several other disorders. It is hence very important to address this problem with priority. In the present experiment we could successfully identify the natural ligands which inhibit the PPAR Gamma, a potential drug target. The results showed Chrysin to be an excellent drug for Diabetes.

REFERENCES

- Brownlee M. Biochemistry and molecular cell biology of diabetic complication: Nature 2001; 414: 813-820. http://dx.doi.org/10.1038/ 414813a PMid:11742414
- Andreas Pollreisz and Ursula Schmidt Erfurth. Diabetic Cataract— Pathogenesis, Epidemiology and Treatment, Journal of Ophthalmology; 2010.
- 3. World Health Organization. http://www.who.int/blindness/causes; 2006.
- Klein BE, Klein R, Wang Q, Moss SE. Older- onset diabetes and lens opacities. The Beaver Dam Eye study Ophthalm Epid 1995; 2: 49-55. http://dx.doi.org/10.3109/09286589509071451
- World health organization: Defination, diagnosis and classification of diabetes mellitus and its complications Geneva: world health organization; 1999.
- Saurabh Ram Biharilal Shrivastava, Prateek Saurath Shrivastava, Jagadeesh Ramasamy. Role of self-care in management of diabetes mellitus, Journal of diabetes and Metabolic disorders 2013; 12: 14.
- Mohan D, Raj D, Shanthirani CS, Datta M, Unwin NC, Kapur A et al. Awareness and Knowledge of diabetes in Chennai. The Chennai urban rural epidemiology study. J Assoc physicians India 2005; 53: 283-287. PMid:15987011
- Wild S, Rogli CG, Green A, Sicree R, King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030, Diabetes

care 2004; 27(5): 1047-1053. http://dx.doi.org/10.2337/diacare. 27.5.1047 PMid:15111519 Prodeens R. Mohan V. The changing scenario of the diabetes enidemic:

- Pradeepa R, Mohan V. The changing scenario of the diabetes epidemic: Implications for India. Indian J Med Res 2002; 116: 121-132. PMid:12674825
- Katulanda P, Constantine GR, Mahesh JG, Sheriff R, Seneviratne RD, Wijeratne S, *et al.* prevalence and projections of diabetes and prediabetes in adults in Srilanka-Srilanka Diabetes, Cardiovascular study (SLDCS). Diabet Med 2008; 25(9): 1062-1069. http://dx.doi.org/ 10.1111/j.1464-5491.2008.02523.x PMid:19183311
- Zucchi P, Ferrari P, Spina ML. Diabetic foot: from diagnosis to therapy. G Ital Nefrol 2005; 22 (suppl 31): S20-S22. PMid:15786395
- American Diabetes Association: Implications of the United Kingdom Prospective Diabetes study. Diabetes care 2004; 27(Suppl 1): 28-32. PMid:14693962
- Michalik L, Auwerx J, Berger JP, Chattergee VK Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O' Rahilly S, Palmer CN, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W. International Union of Pharmacology. LXI. Peroxisome Proliferator activated receptors. Pharmacal Rev 2006; 58(4): 726-41. http://dx.doi.org/ 10.1124/pr.58.4.5 PMid:17132851
- Belfiore A, Genua M, Malaguarnera R. PPAR-gamma Agonists and their effects on IGF-1 Receptor Signaling: Implications for cancer. PPAR RES; 2009. p. 830501. PMid:19609453 PMCid:PMC2709717
- Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by Peroxisome Proliferators Nature 1990; 347: 645-50.
- Auwerx J, Schoonjans K, Fruchart JC, Staels B. Transcriptional control of triglyceride metabolism: fibrates and fatty acids change the expression of the LPL and apo C-III genes by activating the nuclear PPAR. Atherosclerosis 1996; 124 supple: S29-37. http://dx.doi.org/ 10.1016/0021-9150(96)05854-6
- Mohammad Ali Javadi M, Siamak Zarei Ghanavati, MD. Cataracts in Diabetic patients: Journal of Ophthalmic and vision Research 2008; 3(1): 52-65.

Cite this article as:

Shailima RD Vardhini, Naresh Kumar, Aashish. Diabetes mellitus and Pparγ. J Biol Sci Opin 2013; 1(4): 353-355 <u>http://dx.doi.org/10.7897/2321-6328.01415</u>

Source of support: Nil; Conflict of interest: None Declared