INTRODUCTION

Nowadays, herbal medicines are widely accepted as an alternative medicine in healthcare due to its natural origin. Therefore, through toxicity studies, the toxicity of plant extracts can be determined to safeguard people’s health and raise public awareness on toxicity. Toxicology study is significant in the pre-clinical safety evaluation of medicines before it can be implemented and assessed in humans. It also helps to determine whether a new drug should be adopted for clinical use or not. According to Chinedu et al, acute toxicity is defined as the unwanted effect that occurs either immediately or at a short time interval after a single or multiple administration of a substance within 24 hours. Usually, the effects will be observed on day 7 or 14 after dosing, but occasionally it can be detected as early as 24 hours.

Plants contribute many essential nutrients, vitamins and chemical compounds. Therefore, plants play an important role in the development of new drugs for the treatment and prevention of diseases. Physalis minima is a member of the Solanaceae family and is known as letup-letup in Malaysia. Besides Malaysia, it is also widely found in Singapore, Australia, India, Baluchistan, Afghanistan and Tropical Africa. This plant has been used in various local remedies as a diuretic and antipyretic compound and to treat ailments like headache, fever, hypertension, diabetes and lower abdominal pain. Moreover, it has also shown anti-cancer activities.

To date, no study has been done to investigate the toxicity of Physalis minima leaves water extract. Many people believe that since herbal medicine originates from nature it does not possess any side effects or toxic effects. Therefore, toxicity analysis should be carried out to document herbal plants to ensure that consumers can benefit from herbal medicine without neglecting possible toxic effects. The toxicology evaluation of Physalis minima leaves water extract is very important to recognise the side effects, especially for people who consume it as a supplement or medicine. This study is in line with Stanković et al. (2016) who reported that traditional medicine in the form of water extract is used more often compared to alcoholic extract in oral applications. Hence, the purpose of this study is to investigate the possible acute toxic effects of Physalis minima water extract in female rats according to the Organization for Economic Co-Operation and Development Guideline (OECD) Guideline 423.

MATERIALS AND METHODS

Plant material

Physalis minima leaves were obtained from Kepala Batas, Penang, Malaysia. Voucher specimens of this plant were deposited in the Herbarium Unit, School of Biological Sciences, Universiti Sains Malaysia (voucher number 11723).

Preparation of extract

The leaves were first washed with tap water to remove dirt and then thoroughly rinsed with distilled water. Next, the leaves were cut into small pieces and soaked in distilled water at a 1:10 ratio for 24 hours. The obtained extract was agitated using a shaker at room temperature. After that, it was filtered and transferred to a round bottom flask, labelled and immediately subjected to freeze-drying for four days. Finally, the extract was stored at -20°C until further use.

Experimental design for acute oral toxicity

Animal

The study was performed after getting approval from Animal Ethics Committee, Universiti Sains Malaysia (AECUSM). Ref: No: USM/Animal Ethics Approval/2014/693. Six healthy young nulliparous and non-pregnant female rats (Rattus norvegicus) of the Sprague Dawley strain were obtained from the animal house facility of Animal Research Centre of Advanced Medical and
Dental Institute, Universiti Sains Malaysia, Penang, Malaysia. Female rats were selected for this study because we would like to further our study by using *P. minima* extract to inhibit the proliferation of breast cancer cells in female rats. To sustain and control the test facility’s environment, the rats were housed one per cage under controlled temperature (24±1°C), relative humidity (30% to 40%) and lighting (12/12-hour light-dark cycle) with free access to water and food. The OECD Guideline 423 for laboratory animals were followed. Experimental cages were tagged with a label corresponding to the rat in it, while permanent ink of different colours was used to identify individual rats by marking their tails. The rats were acclimatised in the experimental room for five days and their feeding and drinking were checked before commencing the study.

Dose administration

P. minima water extract (2000 mg/kg) was administered using the oral gavage technique. According to OECD (2001), a limit dose of 2000 mg/kg is essential for the member countries for imposition. However, there are ranges of 2000 to 5000 mg/kg for substance in few countries which have a requirement for information on toxicity at dose levels. This research followed Tammu et al. (2013) for the limit test of 2000 mg/kg since the methanolic extract of *P. minima* leaves was found to be non-toxic as it did not cause any toxic symptoms and mortality up to the dose of 2000 mg/kg.

Acute oral toxicity test

The rats were subjected to a fasting period of 12 hours prior to the oral administration of a single dose of *P. minima* water extract. Three rats were administered with a single dose of 2000 mg/kg via oral gavage. The rats were continuously monitored for 12 hours after dosing for any abnormalities in general behaviour and signs of toxicity or death. After dosing, each rat was observed for clinical signs of abnormal behaviour. The body weight, food consumption, fluid intake and behavioural pattern of rats were recorded each day until day 14.

Histopathology

At day 15, the rats were humanely euthanized by using carbon dioxide. Vital organs such as kidney, liver, brain and lung were carefully excised and any adherent tissues were trimmed off. The excised organs were first fixed in 1.23 mol/L of 10% neutral buffered formalin (pH 7.4). The tissues were processed by first clearing with xylene, followed with graded alcohol and then embedded in paraffin, sectioned into 3 µm slices and stained with haematoxylin and eosin. Slides were cover-slipped with a thin coverglass and an appropriate adhesive mounting medium (DPX) was used for overall morphological evaluation. Staining preparation was performed whereby slides were deparaffinized in xylene and rehydrated through a serial dilution of alcohol (95%, 80%, 70% and 50%) and water. Slides were then immersed in Harris haematoxylin for 20 min before rinsing with water. After rinsing, the slides were differentiated in 0.5% acid alcohol for 2 to 3 dips before rinsing with water for 2 min. Next, slides were placed in 0.3% ammonia until the tissue section turned bright blue in colour. Then, the slides were thoroughly washed and dipped in 95% alcohol. Finally, the slides were counterstained with eosin and then dehydrated in 95% alcohol for 30 dips, followed by dehydrating it through a serial solution of absolute alcohol, clearing with xylene and drying and mounting in DPX.

RESULTS

Body weight, food consumption, fluid intake and behavioural pattern of rats

The body weight of rats in both control and treated groups progressively increased throughout the study period, as shown in Table 1. Besides that, all rats appeared consistently healthy throughout the 14 days of experiment. During treatment, the rats continued with their regular food and fluid intake, which caused weight gain over the course of the study. No death was recorded and no other significant observation deviant from the norm was seen in the rats. On the other hand, during behavioural observation of the rats after dosing, an elevated respiration rate for the first 30 min was noted in the extract treated group. In addition, an increase in somatomotor activity was observed for the first 30 mins and at 4 h in this treated group. This could have occurred due to the stress of receiving the oral administration of the extract. The behavioural observations are summarised in Table 2.

Histopathology analysis

Rats were subjected to a detailed post-mortem examination of internal organs, which did not reveal any macroscopic differences in size, colour or texture. A single dose administration of the 2000 mg/kg of *P. minima* extract did not affect the brain, kidney, liver and lungs as it did not cause lethality throughout the 14 days of treatment. Fig. 1 illustrates the histopathological examination of the treated rats’ brain, kidney, liver and lungs stained with haematoxylin and eosin stain, which showed no remarkable lesions that could be attributed as the effect of a single dose of *P. minima* leaves water extract. Fig. 1(a) and (b) show normal Purkinje cells without any degeneration. Besides, both grey and white matter were revealed to be normal under microscopic examination. Likewise, no empty cytoplasm, no damage to neurons and no nuclear shrinkage were observed. Fig. 1(c) represents the kidney section, which shows normal cells lining the Bowman’s capsule. Next, in Fig. 1(d), the liver section containing the portal tract, portal vein, portal artery, bile duct, sinusoids and hepatocytes are shown. No abnormal morphologies were seen in all these cells compared to the control group. Fig. 1(e) shows the lung section, whereby alveolar spaces, alveolar wall and intact bronchiolar epithelial cells with normal morphology were observed. Clara cells or non-ciliated bronchiolar cells located in the bronchiolar epithelium presented no undifferentiated epithelial cells.

DISCUSSION

Acute oral toxicity test performed on rats can be used to evaluate natural remedies’ various pharmacological activities. This test is widely used to identify and classify the substances that can cause acute damage to living organisms in high doses. Thus, it is very important to ensure that a definitive assessment of the safety of medicinal plants is conducted when the medicinal plants have enough potential for development into pharmacological products.

There is no published report on the toxicity of *P. minima* water extract despite the extensive use of this plant in various herbal remedies. However, Tammu et al. (2013) have performed an anti-ulcer activity analysis of *P. minima* using methanol extract. In this research, no rats exhibited any signs of clinical toxicity due to a single oral dose of 2000 mg/kg of *P. minima* water extract and the treatment did not alter their feeding or fluid intake. This indicates that *P. minima* extract can be categorised as a non-toxic material with no clinical toxicity when orally administered for a
short time16. In clinical settings, a weight loss of more than 10% of the initial body weight is considered scientifically significant17,18. Rats treated with \textit{P. minima} water extract continued to gain weight throughout the 14 days of experiment. According to Angelina et al. (2012), the alteration of body weight gain and organ weights of the treatment groups compared to the control group will reflect the toxicity of the substance19. In this study, there were no significance differences in body weight gain with control group in the result analysis in p≥0.05. This concurs with the acute oral toxicity evaluation study by Saleem et al. (2017), who reported that animals administered with \textit{Saccharum munja} and \textit{Camellia sinensis} extract respectively, had normal body weight gain and food and fluid intake for 14 days20,21. In this study, no lesions or changes in colour for both the control and treated groups were found during macroscopic observation of organs.

Moreover, no abnormalities were discovered in the tissues during the histological examination of treated rats compared to the control rats. This finding agrees with the report by Bigliani et al. (2010) who observed no abnormalities during histological examination of rats treated with water extract from \textit{Larrea divaricata}22. Apart from that, Kamonwannasit et al. (2013) reported no signs of toxicity in water extract of \textit{Aquilaria crassna} at the dose of 2000 mg/kg23. Since the present study is the first experiment conducted to examine the acute oral toxicity of \textit{P. minima} water extract in rats, the findings are crucial. Nevertheless, it is too early to confirm the safety of \textit{P. minima} because it has been only tested in an experimental animal. However, this investigation has contributed some information on toxicity that can be applied in future research.

Table 1: Effects of the extract on body weight, food consumption and fluid intake of rats in acute toxicity study

<table>
<thead>
<tr>
<th>Groups</th>
<th>Control</th>
<th>2000 mg/kg PMWE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Body weight (g)</td>
<td></td>
</tr>
<tr>
<td>1st Day</td>
<td>256.67±15.27</td>
<td>229.00±10.47</td>
</tr>
<tr>
<td>7th Day</td>
<td>257.72±6.70</td>
<td>230.85±4.43</td>
</tr>
<tr>
<td>14th day</td>
<td>260.55±11.56</td>
<td>233.20±7.03</td>
</tr>
<tr>
<td>Food consumption (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Day</td>
<td>16.90±4.11</td>
<td>15.58±3.72</td>
</tr>
<tr>
<td>7th Day</td>
<td>17.62±1.15</td>
<td>16.10±1.59</td>
</tr>
<tr>
<td>14th day</td>
<td>17.66±2.64</td>
<td>16.71±2.33</td>
</tr>
<tr>
<td>Fluid intake (mL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Day</td>
<td>25.74±5.58</td>
<td>25.81±5.41</td>
</tr>
<tr>
<td>7th Day</td>
<td>21.85±2.08</td>
<td>27.10±3.46</td>
</tr>
<tr>
<td>14th day</td>
<td>26.62±2.86</td>
<td>27.15±1.79</td>
</tr>
</tbody>
</table>

Note: PMWE: \textit{P. minima} water extract; Values are presented as mean ± SEM; N=3.

Table 2. Behavioural patterns of rats in extract treated at dose 2000 mg/kg and control groups

<table>
<thead>
<tr>
<th>Parameters</th>
<th>30 mins</th>
<th>4h</th>
<th>24h</th>
<th>48 h</th>
<th>7 days</th>
<th>14 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fur and skin</td>
<td>CG</td>
<td>TG</td>
<td>CG</td>
<td>TG</td>
<td>CG</td>
<td>TG</td>
</tr>
<tr>
<td>Eyes and Nose</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Salivation</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Respiration</td>
<td>N</td>
<td>I</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Urination</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Faeces consistency</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Somatomotor activity and behaviour pattern</td>
<td>N</td>
<td>I</td>
<td>N</td>
<td>I</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Sleep</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mucous membrane</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Convulsions and tremors</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
</tr>
<tr>
<td>Coma</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
</tr>
<tr>
<td>Mortality</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
</tr>
</tbody>
</table>

Note: CG: Control groups; TG: \textit{P. minima} extract groups; N: Normal, P: Present, I: Increased, NF: Not found
CONCLUSION

This study showed that *P. minima* water extract is non-toxic via the oral acute toxicity test performed on rats. Nonetheless, further studies should be conducted to perform biochemical and haematological analyses of rats treated with water extract of *P. minima*.

ACKNOWLEDGEMENT

We thank the Bridging Grant (304/CIPPT/6316024) and Research University Grants (1001/CIPPT/811232) for financial support and various local authorities for granting us permission to collect the plant samples.

Fig. 1: Photomicrograph image of the (a) and (b) brain, (c) kidney, (d) liver and (e) lung of water extract of *P. minima* treated groups at dose 2000 mg/kg stained with haematoxylin and eosin. (a) Scale bar 100 µm (x10) while (b) to (e) scale bar 20 µm (x40)
REFERENCES
10. Lim TK. Edible medicinal and non-medicinal plants. Dordrecht: Springer; 2012

Cite this article as:

Source of support: Bridging Grant (304/CIPTPT/6316024) and Research University Grants (1001/CIPTPT/8112122) Conflict of interest: None Declared

Disclaimer: JBSO is solely owned by Molsha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the contents published in our Journal. JBSO cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of JBSO editor or editorial board members.